EUROPEAN COMMISSION

HORIZON 2020 PROGRAMME - TOPIC H2020-LC-GV-01-2018 Connected Electric Vehicle Optimized for Life, Value, Efficiency and Range

GRANT AGREEMENT No. 824295

CEVOLVER – Deliverable Report

D6.1 – Assessment of the performance of the novel functionalities and report of long range drive

GA No. 824295

Deliverable No.	CEVOLVER D6.1	
Related WP	WP4, WP5, WP6.1, WP6.3	
Deliverable Title	Assessment of the performance of the novel	
	functionalities and report of long range drive	
Deliverable Date	2022-09-30	
Deliverable Type	Report	
Dissemination level	Confidential – member only (CO)	
Written By	Alexander Wahl (RWTH)	2022-09-11
	Patrick Manns (RWTH)	
	Chen Bicheng (RWTH)	
	Julian Dönges (RWTH)	
	Christian Monissen (RWTH)	
	Kai Franke (RWTH)	
	Hans Günther Quix (Ford)	
	Vittorio Ravello (CRF)	
Checked by	Alexander Wahl (RWTH)	2022-09-11
Reviewed by (if	Vittorio Ravello (CRF)	2022-10-12
applicable)	Cedric De Cauwer (VUB)	
Approved by	Jens Tang (FEV)	2022-10-28
Status	Final	2022-10-31

Publishable summary

This document reports on the work carried out in "Assessment of the demonstrator BEVs in real world driving" during the CEVOLVER project. It gives an overview of the specific details for the testing on open road as well as the results with respect to the technical targets defined for the project. Moreover, the long-distance drive of achieving a 700km daytrip with the goal of not taking longer than 1h additional to a combustion engine vehicle is demonstrated. This deliverable together with "Deliverable 6.2 - Assessment of the vehicle range improvements for demonstrators developed in WP4 and WP5" will serve to benchmark the developments from prior work packages in an environment as realistic as possible. In this context, Deliverable 6.2 and Deliverable 6.1 supplement each other, where Deliverable 6.2 focusses on the test bench testing activities. In the analysis, as open road testing has many noise factors, special attention is given to the varying boundary conditions, The document reports on the activities regarding 4 technical targets: Technical Target 1 - TT_RouteEnergyConsumptionAccuracy, Technical Target 2 - TT_ArrivalTimeAccuracy, Technical Target 3 - TT_EcoChargingSaving, Technical Target 4 - TT_EcoDrivingSaving and the KPI KPI_LongDistanceDemo. Technical Target 1 focusses on the energy consumption prediction of electric vehicles in open road environment, while Technical Target 2 addresses the arrival time accuracy. Both functions are enablers to reach a charging station at a certain time to charge during a booked charging time slot. Moreover, Technical Target 3 focusses on the Eco-charging functionality, which calculates a time or energy optimal route as well as charging stops, and the amount of energy charged. Technical Target 4 evaluates Eco-driving, a function to reduce the energy demand by predictive speed advice to the driver. The savings theoretically enable a higher average velocity and by this a reduced travel time on the 700km trip. Finally, the KPI shall demonstrate a 700km daytrip with an electric vehicle that only takes one additional hour compared to an ICE vehicle. Deliverables 6.1 and 6.2 conclude the project from a technical point of view, while Deliverable 6.3 will continue assessing the developments from an economic and ecological viewpoint.

Acknowledgement

The author(s) would like to thank the partners in the project for their valuable comments on previous drafts and for performing the review.

Project partners:

#	Partner	Partner Full Name
1	FEV	FEV Europe GmbH
2	BOSCH	Robert Bosch GmbH
3	FORD	Ford-Werke GmbH
5	IFPEN	IFP Energies Nouvelles
6	RWTH	Rheinish-Westfaelische Technische Hochschule Aachen
7	VUB	Vrije Universiteit Brussel
8	UNR	Uniresearch BV
9	I2M	I2M Unternehmensentwicklung GmbH
10	RBOS	Robert Bosch AG
11	CRF	Centro Ricerche Fiat

Disclaimer/ Acknowledgment

Copyright ©, all rights reserved. This document or any part thereof may not be made public or disclosed, copied or otherwise reproduced or used in any form or by any means, without prior permission in writing from the CEVOLVER Consortium. Neither the CEVOLVER Consortium nor any of its members, their officers, employees or agents shall be liable or responsible, in negligence or otherwise, for any loss, damage or

expense whatever sustained by any person as a result of the use, in any manner or form, of any knowledge, information or data contained in this document, or due to any inaccuracy, omission or error therein contained.

All Intellectual Property Rights, know-how and information provided by and/or arising from this document, such as designs, documentation, as well as preparatory material in that regard, is and shall remain the exclusive property of the CEVOLVER Consortium and any of its members or its licensors. Nothing contained in this document shall give, or shall be construed as giving, any right, title, ownership, interest, license or any other right in or to any IP, know-how and information.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824295. The information and views set out in this publication does not necessarily reflect the official opinion of the European Commission. Neither the European Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein.

