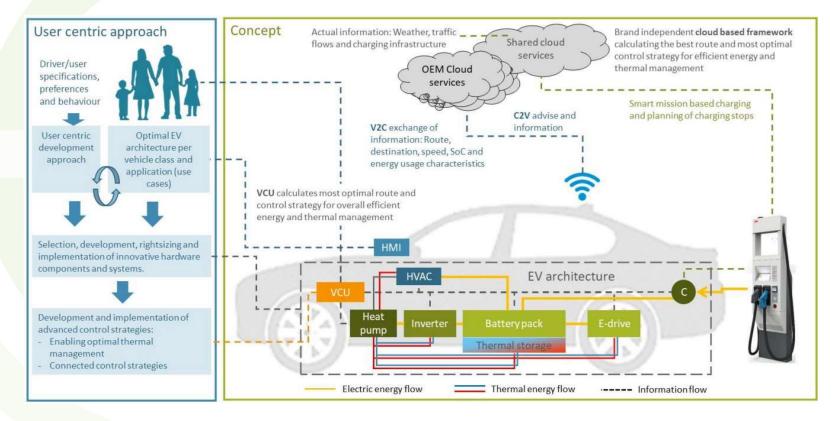


Development of Use Cases for Battery Electric Vehicles

- User Centric Approach
- Defined Use Cases
- Boundary Conditions


- User Centric Approach
- Defined Use Cases
- Boundary Conditions

CEVOLVER Objective

The project takes a user-centric approach to create battery-electric vehicles that are comfortable and usable for long day trips whilst components and the installed battery is sized for both affordability and usability.

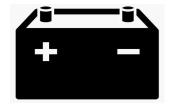
CEVOLVER – GA 824295 – FINAL EVENT

User Centric Approach

The conventional approach for the component and system sizing is based on market researches as well as the legacy knowledge from the development of the conventional vehicles. Especially for battery electric vehicles this approach potentially leads to a potential oversizing of the components and systems resulting in increased vehicle cost.

Example: Range of a vehicle with internal combustion engine vs. BEV

Vehicle with internal combustion engine Fuel consumption: 7l/100km

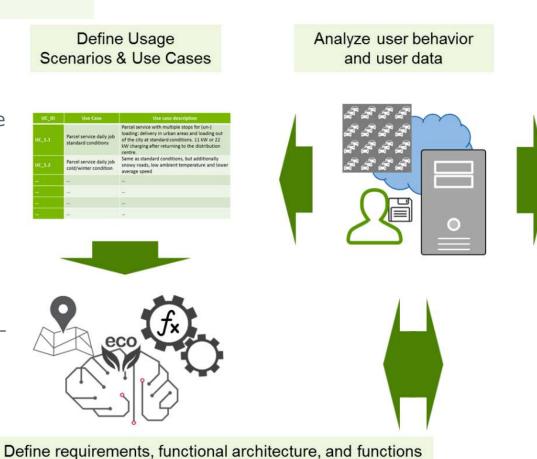

Tank size: 42L vs. 49L Range: 600km vs. 700km -minor cost impact -mainly package -minor weight impact

BEV

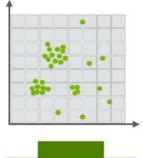
Energy consumption: 20kWh/100km

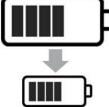
Battery capacity: 60kWh vs. 80kWh Range: 300km vs. 400km -high cost impact -package -significant weight increase

On the contrary to the conventional approach, user centric approach includes two aspects, the right sizing of the powertrain components and the development of the control strategies.

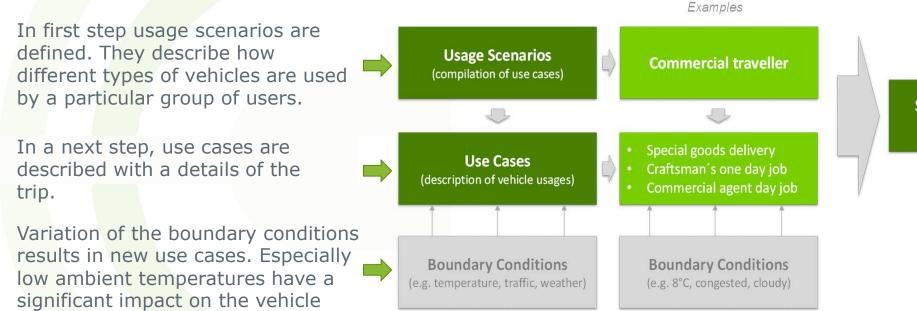


CEVOLVER – GA 824295 – FINAL EVENT


User Centric Approach


- Usage scenarios • and use cases were developed using user centric approach.
- Big data analysis • were used to support the selection of driving profiles for the usecases.

Estimate load profiles using simulation based on fleet velocity profiles

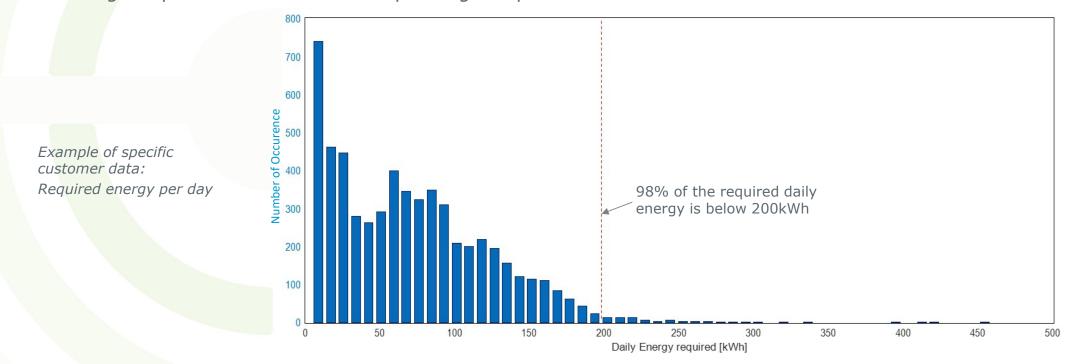


Right-sizing components

CEVOLVER - GA 824295 - FINAL EVENT

Use Case Development

Stakeholder & System Requirements



range of BEVs.

Use Case Development

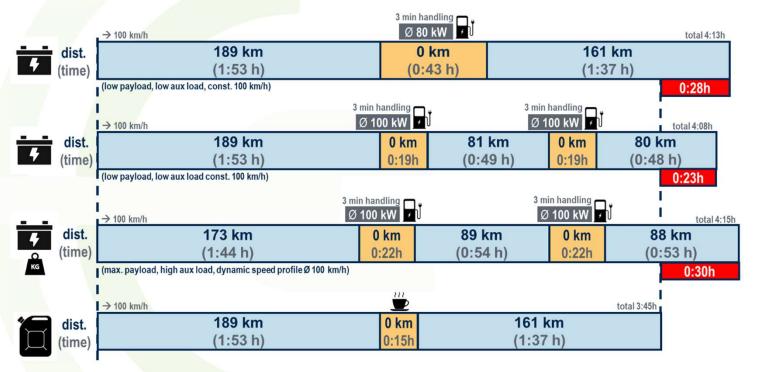
Analyzing data statistically collected by OEMs and institutions from end users in real world enables the extraction of load points for components and classification regarding their frequency of occurrence. As a result, outliers that occur only in rare cases over the lifetime can be identified. This gives the initial intention for reducing the power level of the corresponding components.

- o User Centric Approach
- Defined Use Cases
- Boundary Conditions

Overview of usage scenarios and use cases

5 usage scenarios and in total 14 different use cases have been defined ⇒ not all use cases are relevant for all applications

Examples:


- A light duty vehicle is most likely not be used for a holiday trip
- A passenger car is not intended to be used for parcel delivery

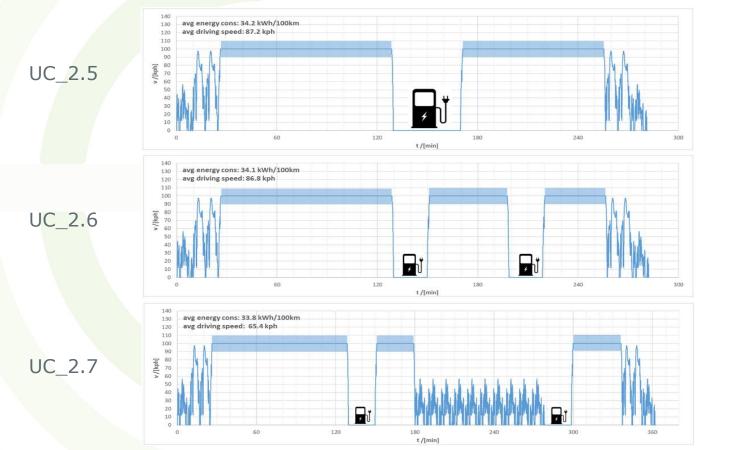
Usage Scenario	Use Case ID	Use Case
Parcel delivery service	UC_1.1	Parcel service daily job
		standard conditions
	UC_1.2	Parcel service daily job
		cold/winter condition
	UC_1.3	Parcel service daily job
		hot/summer condition
Private & commercial	UC_2.1	Commercial agent
traveller		daily customer visit usage
	UC_2.2	Special Goods Delivery
		daily usage w/o intermediate charging
	UC_2.3	Special Goods Delivery
	_	special usage with intermediate charging
	UC_2.4	Private visit of 350 km (distance)
		away living relatives
	UC_2.5	Craftsman's one-day job 350 km away
		standard conditions, one stop per each 350 km trip
	UC_2.6	Craftsman's one-day job 350 km away
		standard conditions, two stops per each 350 km trip
	UC_2.7	Craftsman's one-day job 350 km away
		with traffic jam at cold condition, two stops per each 350 km trip
	UC_2.8	Holiday trip (>700 km)
Short city trip	UC_3.1	Short urban trip(s)
		(approx. 5 km)
Short range commuter	UC_4.1	home => job => home
		(approx. 30 km distance)
Long range commuter	UC_5.1	home => job => home
		(approx. 60 km distance)

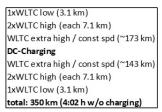
CEVOLVER - GA 824295 - FINAL EVENT

Example Application Specific Use Case

Analyses of light duty fleet data have shown:

- long distance usage is expected to occur only in exceptional cases ⇒ 700 km day trip divided into a twoway journey, 350 km trip to a destination and returning later the same trip ⇒ in total ~700km
- average speeds are mainly between 80 and 110 km/h for comparable long distance transporter applications


700 km day trip with < 60 min additional travel time seems possible, considering an avg. speed of 100 km/h and 100 kW avg. charging power!

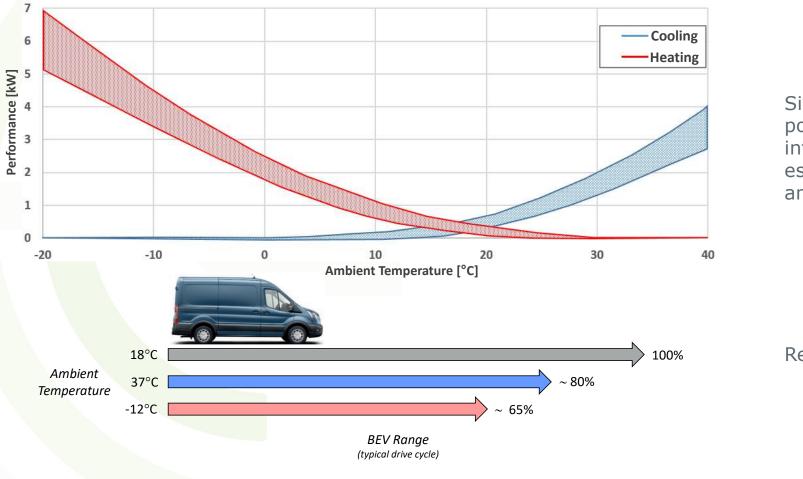

CEVOLVER – GA 824295 – FINAL EVENT

Example Application Specific Use Case

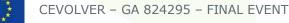
Craftsman's one day job 350km away use cases derived from customer data:

1xWLTC low (3.1 km) 2xWLTC high (each 7.1 km) WLTC extra high / const spd (~173 km) **DC-Charging** WLTC extra high / const spd (~80 km) **DC-Charging** WLTC extra high_ltd (~63 km) 2xWLTC high (each 7.1 km) 1xWLTC low (3.1 km) **total: 350 km (4:03 h w/o charging)**

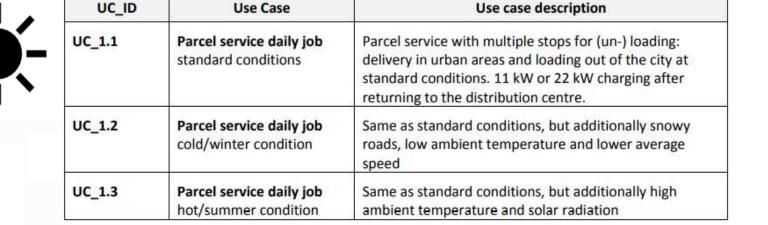
1xWLTC low (3.1 km) 2xWLTC high (each 7.1 km) WLTC extra high / const spd (~173 km) DC-Charging WLTC extra high / const spd (~49 km) 10xWLTC low (each 3.1 km) DC-Charging WLTC extra high / const spd (~63 km) 2xWLTC high (each 7.1 km) 1xWLTC low (3.1 km) total: 350 km (5:22 h w/o charging)



- o User Centric Approach
- Defined Use Cases
- Boundary Conditions


Boundary Conditions

Significant amount of power required for interior climatization especially at cold ambient temperatures



Boundary Conditions

The impact of certain boundary conditions as ambient temperature and solar radiation have a high impact on low load cycles due to that fact the ratio between propulsion and interior climatization energy is unfavourable. Hence, these boundary conditions have been varied for the parcel delivery service usage scenario.

Boundary Conditions

Especially for the parcel delivery cycle a "frequent door opening" test has been conducted to investigate the impact on interior heating requirements

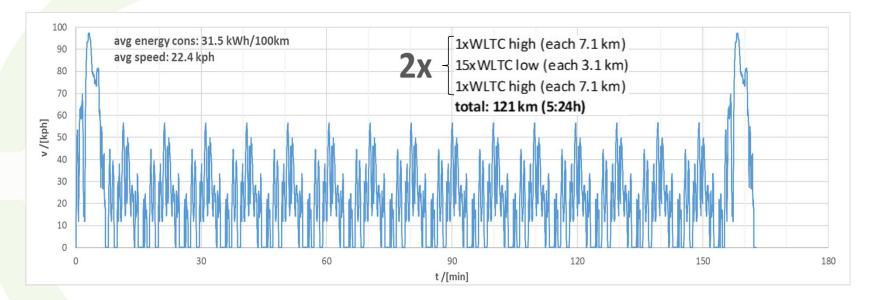
More energy is lost to the ambient which has to be compensated by increased air inlet temperature from the interior heating system ⇒ Boundary conditions (interior heating performance) has to be adapted for this specific test

23 door closed frequent door opening T CH 61 22.5 T/ [°C] 22 21.5 21 500 1000 1500 2000 2500 3000 3500 4000 0 40 T AirDuct ML 1/ [³⁰ 20 10 500 1000 0 1500 2000 2500 3000 3500 4000

A heat pump system is a high efficient system for interior heating, but does it make sense for all applications and use cases?

Based on the findings for this specific use case, maybe other technologies are more appropriate.

 \Rightarrow See also later Thermal Management section



27 September 2022 Slide 39

Boundary Conditions - Specific Use Cases

Parcel delivery use cases derived from customer data:

- \Rightarrow UC_1.1 Standard conditions (14°C)
- \Rightarrow UC_1.2 Cold/winter conditions (-7°C)
- \Rightarrow UC_1.3 Hot/summer conditions (35°C)

CEVOLVER – GA 824295 – FINAL EVENT

Conclusions

- The conventional approach for component and system sizing is not practical for battery electric vehicles
- The user centric development approach enables rightsizing of components/systems in combination with attractive functions
- Statistical evaluation of "Big" real world customer data facilitates the definition of driving profiles for the use cases
- Usage scenarios and specific use cases have been defined for a wide range of battery electric vehicle applications
- Consideration of the boundary conditions are important for the defining appropriate use cases especially for low load drive cycles

CEVOLVER – GA 824295 – FINAL EVENT