

Vehicle simulation platform for the development and evaluation of advanced energy management functions

27 September 2022 Slide 42

Advanced energy management functions

- Or "features":
 - Smart Fast Charging
 - Eco-Charging
 - Eco-driving
 - Thermal Management
- Work on **different aspects of energy consumption** (driving & charging, behavior & control)
- Make features **co-operate** where possible.
- Test features in simulation prior to demonstrator deployment
 - > Need for a simulation platform to develop, integrate and evaluate the CEVOLVER features

CEVOLVER – GA 824295 – FINAL EVENT

Development of the vehicle simulation platform

- 1. Definition of base vehicle model
 - Definition of drivetrain topologies
 - Definition of interfaces
 - Definition of functional requirements
- 2. Definition of simulation environment
 - a) Matlab Simulink based
 - Enabling use case simulations
 - 1. Driving & charging
 - 2. Environmental conditions

Role I and Role II ASizing & Features				Demonstrator during operation			
n	Functional requirement	Lo-Fi	Hi-FI	Demo Ford	Demo Bosch	Demo CRF 1 (Optimus 500e)	Demo CRF 2 (Future 500e)
BMS							
	Empirical model	Х		х		Х	Х
	Model elektrothermal (semi-empirical)	Х	Х	х			
	Include thermal model=> thermal model with regards of fast charging required!	v	v	v		,	v
	PMS and VCII in communication for cafety	×	×	×		×	×
	losses should be considered (Losses depending on different input parameters)	Ŷ	~	×	v	~	×
	Includes ageing battery (Simplified e.g. increases internal resistance, SoH)	x	^	x	^	x	x
	Battery againg (he able to represent the effect of fast					~	

CEVOLVER - GA 824295 - FINAL EVENT

27 September 2022 Slide 44

FNTS

Development of the vehicle simulation platform

- 3. Understanding the features and their interactions
 - Definition of a functional architecture
 - Definition of control & non-control (advice) features
 - Partitioning features between vehicle (i.e. VCU) and cloud-based
- 4. Extend platform with connectivity
- 5. Develop, integrate and test features
- 6. Implement feature with demonstrator

CEVOLVER - GA 824295 - FINAL EVENT

Smart Fast Charging: the concept

Define the **cooling** or **heating** strategy such Temperature that:

- Given the expected driving profile
- Given the planned charging power
- Given the planned arrival time at charging station
- Given the predicted environmental conditions during driving and at the charging location Grower Dever
- The battery operating boundaries are respected
- The time loss due to charging is minimum (maximum charging power)
- The energy consumption of the of the system is minimal.

Common driving phase
 Pre-conditioning

- Smart conditioning during charging
- No or constant conditioning
- ts Start pre-conditioning
- tc Start charging
- End of fast charge for pre-conditioning
- te2 End of fast charge with smart conditioning during charging
- te3 End of fast charge with no or constant cooling
- tmax Maximum operating temperature battery

Smart Fast Charging: Methodology

- No availability of (big) testing data
 =>model based
- Have real-time capable calculation in the VCU
- Use current available model =high fidelity semi-empirical electrothermal battery model
- => Generate solution off-line
- => Use dynamic programming

Smart Fast Charging: Methodology

DP runs simulations through stages with different control settings to find optimal control for states
 Results stored results in multi-dimensional maps

CEVOLVER - GA 824295 - FINAL EVENT

Smart Fast Charging: the function

Smart Fast Charging – Simulation results hot conditions

Smart Charging Hot Conditions (25°C, 10-80% SoC, 150kW, 60kWh battery) 3800 3600 3400 3200 Charging Time (s) 0095 0087 - Cooling setpoint 25 °C - Cooling setpoint 30 °C ---- Cooling setpoint 35 °C Cooling setpoint 40 °C Cooling setpoint 50°C 2400 Optimal Charge 2200 2000 1800 20 25 30 35 40 45 Intial Temperature at start charging (°C)

Simulation example for 60kWh battery, 150kW charging, WLTC driving 25 degrees ambient:

- Advantage of Smart Fast Charging dependent on competing control strategy and characteristics of power de-rating during charging
- Optimal charging is very competitive strategy compared to pre-conditioning.
- Pre-conditioning only relevant at higher C-rate or extreme conditions

Smart Fast Charging – Simulation results cold conditions

 Pre-conditioning has significant advantage to only optimal charging unless battery is actively heated during driving to moderate temperatures already

Conclusions

- Knowledge transfer from other European H2020 project (HIFI-ELEMENTS) valuable
- Simulation platform powerful tool for feature development and evaluation
 - To define and finetune functional architectures (with interfaces)
 - To test and calibrate features prior to vehicle deployment
- Smart Fast Charging provides significant time gains in cold conditions and potential for significant time gains in severe hot conditions
- Smart Fast Charging was deployed and tested in demonstrator vehicle and results in line with simulations

CEVOLVER – GA 824295 – FINAL EVENT