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„We do now see that thermal systems in combustion vehicles were 
oversized and that the controls were not sufficiently accurate“              

– A consortium member
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Thermomanagement of electric vehicles
Energy demand at –20°C in WLTP cycle

ENERGY DEMAND DISTRIBUTION IN WLTP AT -20°C

GENERAL ASPECTS OF BEV THERMAL SYSTEMSREFERENCE VEHICLE A-SEGEMENT

• Thermal systems in BEV can have significant 
impact on energy consumption

• Cooling or heating at high/low temperatures 
has significant impact on the driving range

• For enabeling long distance travelling, energy 
saving in the thermal system is a key aspect



Agenda

o Aspects of Thermal Management on Long Distance Capability

o System Engineering Centered Development

o Hardware Solutions

o Bosch’s flexible Skateboard Approach 

o Heat Panels for fast Cabin Comfort (Ford)

o Software Solutions

o Predictive Powertrain Conditioning

o Predictive Cabin Conditioning
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BEV Long Distance Capability
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BEV Long Distance Capability
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Heat Pump
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Agenda
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Redesign of Thermal Systems using 
Systems Engineering
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SYSTEMATIC ANALYSIS

• Abstraction of the system for better 
understanding of implications

• System needs to function as a 
whole due to interactions with other 
systems

Intention: Rethinking current concepts

Legend:



The Thermal System as Central Participant 
in Vehicle Operation
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MECHATRONICAL & THERMAL PATH
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Acceleration
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Legend:
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Thermal



Agenda

o Aspects of Thermal Management on Long Distance Capability

o System Engineering Centered Development

o Hardware Solutions

o Bosch’s flexible Skateboard Approach 

o Heat Panels for fast Cabin Comfort (Ford)

o Software Solutions

o Predictive Powertrain Conditioning

o Predictive Cabin Conditioning

27 September 2022CEVOLVER – GA 824295 Slide 10



Bosch Skateboard Platform
Flexible Development Approach
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o The skateboard was built 
up developing E/E, 
chassis, powertrain and 
thermal system

o Thermal system can be 
flexibly developed on 
skateboard

o Several iterations and 
simulations run for 
optimization of system

o Two systems were built 
up and tested 



Bosch Skateboard Platform
Thermal Design – Heat Pump Results at -7°C

27 September 2022CEVOLVER – GA 824295 Slide 12

Thermodynamic COPHeat Pump Process



Bosch Skateboard Platform
Thermal Design – Heat Pump Results at -7°C
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o Tests with PTC and heat pump were 
conducted

o Energy consumption at WLTC

o Heat Pump: 1.1kWh

o PTC: 1.6kWh

o Savings for a WLTC on battery level: 4.8%

o Range improvement at highway condition 
(90km/h) ~2050m additional range for after 
driving WLTC



Heat Panels for fast Cabin Comfort (Ford)
Hardware Integration
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o Use Case: Parcel delivery service

o Frequent door opening cools the cabin
esp. in winter conditions

o Solution: 

o Heating panels for fast driver comfort

o Low time constant → Immediate 

comfort increase

o Energy demand: 250W

o Reduced hardware costs especially
compared to a heat pump system



Heat Panels for fast Cabin Comfort (Ford)
Analysis of Different Heating Measures
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o Different relevant load cases
have been analysed towards
hardware measures

o Depending on the Use Case 
different measures are
advantegous

o One reason is the cycle length
and the frequency of door
openings

o Due to cost aspects and fast 
comfort increase heating panels
are advantegous especially for
the delivery cycle use case
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Temperature Dependent Efficencies
Electric Motor Characteristic Map
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Wahl, Alexander et al., Efficiency increase through model predictive thermal control of electric vehicle powertrains, Energies, 2022, 14

Total Power Loss in PMSM:

𝑃𝐿𝑜𝑠𝑠,𝑇𝑜𝑡,𝑃𝑀𝑆𝑀 = 𝑃𝐿𝑜𝑠𝑠,𝐶𝑜𝑝𝑝𝑒𝑟 + 𝑃𝐿𝑜𝑠𝑠,𝐼𝑟𝑜𝑛 + 𝑃𝐿𝑜𝑠𝑠,𝑀𝑎𝑔𝑛𝑒𝑡 + 𝑃𝐿𝑜𝑠𝑠,𝑀𝑒𝑐ℎ

o Loss mechanisms:
o Copper losses: 𝑃𝐿𝑜𝑠𝑠,𝐶𝑜𝑝𝑝𝑒𝑟
o Iron losses: 𝑃𝐿𝑜𝑠𝑠,𝐼𝑟𝑜𝑛
o Magent losses: 𝑃𝐿𝑜𝑠𝑠,𝑀𝑎𝑔𝑛𝑒𝑡

o Mechanical losses: 𝑃𝐿𝑜𝑠𝑠,𝑀𝑒𝑐ℎ

o The temperature dependence is mainly due to thermal field 
weakening so less current needs to be invested. 

o Additionally, the copper losses itself are temperature 
dependent:

𝑃𝐿𝑜𝑠𝑠,𝑐𝑜𝑝𝑝𝑒𝑟 = 𝑖2 ∙ 𝜌𝐶𝑢 𝑇 ∙
𝑙

𝐴
= 𝑖2 ∙ 𝜌0 ∙ 1 + 𝛼 ∙ 𝑇 − 𝑇0 ∙

𝑙

𝐴
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Powertrain Thermal System Layout 
System of Investigation
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General:

o For understanding the function behaviour 
& obtaining first gains a simplified thermal 
layout was chosen 

Target:

o The overall system shall be operated at 
minimum energy invested

o Pump and fan provide cooling, but cost 
electical energy

o Sweetspot between actuators and 
temperature dependent efficencies to be 
found
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Wahl, Alexander et al., Efficiency increase through model predictive thermal control of electric vehicle powertrains, Energies, 2022, 14



Simulative Results
As published in [1]
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Investigated drive cycles

(a) overall efficiency increase

(b) Efficency split for Eifel cycle

[1] Wahl, Alexander et al., Efficiency increase through model predictive thermal control of
electric vehicle powertrains, Energies, 2022, 14



Simulative Results of Long Distance Trip
Turin – Ceriale Roundtrip 350km
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→The savings reflect a distance increase of 10.5km on a 700km roundtrip



Functional architecture for optimizing 
cabin climatization using predictive data
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Data request

Predictive data 
along the route

Optimization-based thermal 
software

MPC Control Algorithm

Cabin Model

Optimization

State variables 𝐱𝐢, Control variables 𝐮𝐢

xi =

TAir,Cbn
TInterior
THVA𝐶

, ui =

rCooling
rBlower
rHeating
rFresh Air

Nonlinear MPC

xi k + 1 = f xi k , ui k

y k = f xi k , ui k

Constraints

TAir,Cbn,min

TInterior,min

THVAC,min

 xi  k 

TAir,Cbn,max

TInterior,max

THVAC,max

rCooling,min

rBlower,min
rHeating,min

rFreshAir,min

 ui  k ,

rCooling,max

nBlower,max
rHeating,max

rFreshAir,max

System to be 
controlled

Cloud 
Service

Desired
route

Weather 
Information
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Vehicle Measurements for the Optimized 
Cabin Conditioning with CRF Validator 1

OVERVIEW OF THE CRF MEASUREMENT CAMPAIGN

o Measurements in conditioned roller dyno

o 2 different driving profiles based on WLTC Phases

o Use case: Commute to work

o 2 Different speed profiles

o Two different ambient conditions

o -10 °C & 35 °C

o Various baseline and advanced measurements
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Exemplary Measurement Results for the 
CRF Validator 1

SPEED PROFILE 1 (HOME → WORK) | -10 °C

AUXILIARY ENERGY CONSUMPTIONCABIN TEMPERATURE & CONTROLS
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Evaluation of the new functionalities for 
cabin conditioning

SUMMARY

o Savings range from 13.4 % to 32.3 % for cold ambient conditions for the auxiliary energy 
consumption for specific measurements

o Lower savings potential on auxiliary level for hot ambient conditions  (max. 6.4 % for specific 
measurements) 

o Main savings due to:

o Utilization of recirculation rate

o Improved control of the fan

o More efficient operation of the compressor due to improved set points

o In average the following energy savings could be achieved (average of all measurements conducted):

o Hot case (35 °C): 2.5 %

o Cold Case (-10 °C): 1.3 %

CRF VALIDATOR 1



Conclusion

o The thermal system has still the highest energy consumption after the powertrain

o Heat pumps have shown in the project to be an effective measure to enhance the range for highway drives

o For special use cases, heating panels can be advantegous over a heat pump

o Thermal system controls are an important contributor to future savings especially cabin conditioning

27 September 2022CEVOLVER – GA 824295 Slide 25

Is Advanced Thermal Management An Enabler of Long Distance Capability?


