

Advanced Thermal Management An Enabler of Long Distance Capability?

Alexander Wahl, Patrick Schutzeich RWTH Aachen 27.09.2022

"We do now see that thermal systems in combustion vehicles were oversized and that the controls were not sufficiently accurate" – A consortium member

Thermomanagement of electric vehicles Energy demand at –20°C in WLTP cycle

ENERGY DEMAND DISTRIBUTION IN WLTP AT -20°C

REFERENCE VEHICLE A-SEGEMENT

GENERAL ASPECTS OF BEV THERMAL SYSTEMS

- Thermal systems in BEV can have significant impact on energy consumption
- Cooling or heating at high/low temperatures has significant impact on the driving range
- For enabeling long distance travelling, energy saving in the thermal system is a key aspect

Agenda

- Aspects of Thermal Management on Long Distance Capability
- System Engineering Centered Development
- Hardware Solutions
 - Bosch's flexible Skateboard Approach
 - Heat Panels for fast Cabin Comfort (Ford)
- Software Solutions
 - Predictive Powertrain Conditioning
 - Predictive Cabin Conditioning

BEV Long Distance Capability

BEV Long Distance Capability

Agenda

- Aspects of Thermal Management on Long Distance Capability
- System Engineering Centered Development
- Hardware Solutions
 - Bosch's flexible Skateboard Approach
 - Heat Panels for fast Cabin Comfort (Ford)
- Software Solutions
 - Predictive Powertrain Conditioning
 - Predictive Cabin Conditioning

Redesign of Thermal Systems using Systems Engineering

SYSTEMATIC ANALYSIS

- Abstraction of the system for better understanding of implications
- System needs to function as a whole due to interactions with other systems

Intention: Rethinking current concepts

The Thermal System as Central Participant in Vehicle Operation

MECHATRONICAL & THERMAL PATH

Agenda

- Aspects of Thermal Management on Long Distance Capability
- System Engineering Centered Development
- Hardware Solutions
 - Bosch's flexible Skateboard Approach
 - Heat Panels for fast Cabin Comfort (Ford)
- Software Solutions
 - Predictive Powertrain Conditioning
 - Predictive Cabin Conditioning

Bosch Skateboard Platform Flexible Development Approach

- The skateboard was built up developing E/E, chassis, powertrain and thermal system
- Thermal system can be flexibly developed on skateboard
- Several iterations and simulations run for optimization of system
- Two systems were built up and tested

Bosch Skateboard Platform Thermal Design – Heat Pump Results at -7°C

Bosch Skateboard Platform Thermal Design – Heat Pump Results at -7°C

- Tests with PTC and heat pump were conducted
- Energy consumption at WLTC
 - Heat Pump: 1.1kWh
 - o PTC: 1.6kWh
- Savings for a WLTC on battery level: 4.8%
- Range improvement at highway condition (90km/h) ~2050m additional range for after driving WLTC

Heat Panels for fast Cabin Comfort (Ford) Hardware Integration

- Use Case: Parcel delivery service
- Frequent door opening cools the cabin esp. in winter conditions
- Solution:
 - Heating panels for fast driver comfort
 - Low time constant → Immediate comfort increase
 - Energy demand: ~250W
 - Reduced hardware costs especially compared to a heat pump system

60°C

60°C

60°C

Sun Visor Dash Lower

Rear Wall

loor Mat

Heat Panels for fast Cabin Comfort (Ford) Analysis of Different Heating Measures

- Different relevant load cases have been analysed towards hardware measures
- Depending on the Use Case different measures are advantegous
- One reason is the cycle length and the frequency of door openings
- Due to cost aspects and fast comfort increase heating panels are advantegous especially for the delivery cycle use case

Agenda

- Aspects of Thermal Management on Long Distance Capability
- System Engineering Centered Development
- Hardware Solutions
 - Bosch's flexible Skateboard Approach
 - Heat Panels for fast Cabin Comfort (Ford)
- Software Solutions
 - Predictive Powertrain Conditioning
 - Predictive Cabin Conditioning

Temperature Dependent Efficencies Electric Motor Characteristic Map

Total Power Loss in PMSM:

 $P_{Loss,Tot,PMSM} = P_{Loss,Copper} + P_{Loss,Iron} + P_{Loss,Magnet} + P_{Loss,Mech}$

- Loss mechanisms:
 - Copper losses: *P*_{Loss,Copper}
 - Iron losses: *P*_{Loss,Iron}
 - Magent losses: *P*_{Loss,Magnet}
 - Mechanical losses: *P*_{Loss,Mech}
- The temperature dependence is mainly due to thermal field weakening so less current needs to be invested.
- Additionally, the copper losses itself are temperature dependent:

$$P_{Loss,copper} = i^2 \cdot \rho_{Cu}(T) \cdot \frac{l}{A} = i^2 \cdot \rho_0 \cdot [1 + \alpha \cdot (T - T_0)] \cdot \frac{l}{A}$$

Wahl, Alexander et al., Efficiency increase through model predictive thermal control of electric vehicle powertrains, *Energies*, 2022, 14

Powertrain Thermal System Layout System of Investigation

General:

 For understanding the function behaviour & obtaining first gains a simplified thermal layout was chosen

Target:

- The overall system shall be operated at minimum energy invested
- Pump and fan provide cooling, but cost electical energy
- Sweetspot between actuators and temperature dependent efficencies to be found

Wahl, Alexander et al., Efficiency increase through model predictive thermal control of electric vehicle powertrains, Energies, 2022, 14

Simulative Results As published in [1]

Investigated drive cycles

[1] Wahl, Alexander et al., Efficiency increase through model predictive thermal control of electric vehicle powertrains, *Energies*, 2022, 14

Simulative Results of Long Distance Trip Turin – Ceriale Roundtrip 350km

 \rightarrow The savings reflect a distance increase of 10.5km on a 700km roundtrip

Functional architecture for optimizing cabin climatization using predictive data

Vehicle Measurements for the Optimized Cabin Conditioning with CRF Validator 1

OVERVIEW OF THE CRF MEASUREMENT CAMPAIGN

MEASUREMENT BOUNDARIES

- Measurements in conditioned roller dyno
- 2 different driving profiles based on WLTC Phases
 - Use case: Commute to work
 - 2 Different speed profiles
- Two different ambient conditions
 - -10 °C & 35 °C
- Various baseline and advanced measurements

Exemplary Measurement Results for the CRF Validator 1

SPEED PROFILE 1 (HOME \rightarrow WORK) | -10 °C

CABIN TEMPERATURE & CONTROLS

AUXILIARY ENERGY CONSUMPTION

Evaluation of the new functionalities for cabin conditioning

SUMMARY

CRF VALIDATOR 1

- Savings range from 13.4 % to 32.3 % for cold ambient conditions for the auxiliary energy consumption for specific measurements
- Lower savings potential on auxiliary level for hot ambient conditions (max. 6.4 % for specific measurements)
- Main savings due to:
 - Utilization of recirculation rate
 - Improved control of the fan
 - More efficient operation of the compressor due to improved set points
- In average the following energy savings could be achieved (average of all measurements conducted):
 - Hot case (35 °C): 2.5 %
 - Cold Case (-10 °C):
 1.3 %

Conclusion

Is Advanced Thermal Management An Enabler of Long Distance Capability?

- The thermal system has still the highest energy consumption after the powertrain
- Heat pumps have shown in the project to be an effective measure to enhance the range for highway drives
- For special use cases, heating panels can be advantegous over a heat pump
- Thermal system controls are an important contributor to future savings especially cabin conditioning

